Lesson 32 - Lagrange Multipliers II Applications

Last class, we learned how to use Lagrange Multipliers to find extrema (maxima and minima) of a function of two variables on a curve.

maximize (or minimize): z = f(x, y)g(x, y) = 0subject to:

Today we will use this test to help us solve optimization word problems.

Strategy for Lagrange Multipliers Optimization Problems Ι

- (1) **Read** the problem. Then **read it again** for details.
- (2) Write your variables and what they mean.
- (3) Write an objective function and whether you are trying to maximize it or minimize it.
- (4) Write the **constraint equation** specified in the problem. (This is the **subject to** part of the problem.)
- (5) Use the Lagrange Multipliers to find places where the maximum or minimum may occur.
 (6) Test another point on the constraint equation to ensure that you have found a maximum or minimum.
- (7) Answer the question. Read carefully to know if they want the point where the extremum occurs or if they want the extreme value (plug point into f(x, y).)

II Examples

Example 1 (Problem 23 in Section 7.5 of *Applied Calculus*, 9th edition, by Hoffman and Bradley). A manufacturer has \$8,000 to spend on the development and promotion of a new product. It is estimated that if x thousand dollars is spent on development and y thousand dollars is spent on promotion, sales will be approximately

$$f(x,y) = 50x^{1/2}y^{3/2}$$

units. How much money should the manufacturer allocate to development and how much to promotion to maximize sales?

2

Equate
$$\lambda^2$$

 $\frac{25^2 y^3}{\chi} = 75^2 \chi y$

Case1: What if
$$x = 0$$
?
 $0 + y = 8$
 $y = 8$
 $Pt: (0,8) f(0,8) = 0$
Case2: What if $x \neq 0$?
 $25^{2}y^{3} = 75^{2}x^{2}y$
 $x^{5^{2}}y^{3} = 75^{2}x^{2}y$
 $25^{2}y^{3} - 75^{2}x^{2}y = 0$
 $25^{2}y(y^{2} - 3^{2}x^{2}) = 0$
 $25^{2}y(y + 3x)(y - 3x) = 0$
3 possibilities
 $y = 0$ $y = -3x$ $y = 3x$

y = 3x x + y = 8 x + 3x = 8 4x = 8 x = 2 x + y = 8 2 + y = 8 y = 6 (2, 6) $f(2, 6) = 50\sqrt{2} + 6^{3} > 0$ max(2, 6) y = 6y = 0 x + y = 8 x + 0 = 8 x = 8his would Mean one of 2 or y is hegatise. f(8,0) = 0Does not make sense Ans: Spend \$2000 on development \$4000 on promotion to maximize sales

Example 2 (Based on a problem on a LON-CAPA problem). The temperature at a point (x, y) on a plate is given by

$$T(x,y) = 3x^2 + 2y^2 - 18x + 16y$$

degrees Celsius. An ant travels in a circle on the plate that has center at (3, -4) and radius 5. What is the hottest temperature encountered by the ant? The coldest temperature?

$$\begin{array}{rcl} \max(min & T(X, y) = 3x^{2} + Zy^{2} - 18x + 110y \\ \text{S.t.} & (x-3)^{2} + (y+4)^{2} = 2S \\ & g(x, y) = (x-3)^{2} + (y+4)^{2} - 2J \\ \\ \begin{cases} bx - 18 = x \cdot 2(x-3) & 0 \\ 4y + 1b = x \cdot 2(y+4) & 0 \\ (x-3)^{2} + (y+4)^{2} = 2S & 0 \\ \end{cases}$$

$$\begin{array}{rcl} (bx - 18 = x \cdot 2(x-3) \\ 3x - 9 = x(x-3) \\ 3x - 9 = x(x-3) \\ 3x - 9 = x(x-3) = 0 \\ 3(x-3) - x(x-3) = 0 \\ x = 3 \\ b \leq 3 \\ 0^{2} + (y+4)^{2} = 2S \\ y + 4 = \pm S \\ y = -4 \end{bmatrix}$$

$$\begin{array}{rcl} x - 3 \\ y = -4 \\ y =$$

Pts	TCX.y)-	= 3 x2 + 2y2	Zy2 -18×+16 y			
(³ , 1)	-9 -9			highest t	emp: 16°C	
(3, -9)	16	1		J Jowey	emp: 16°C tcmp:-9°	C
(-2,-4) (8,-4)	16			- 0	•	

Example 3 (Problem 35 in Section 7.5 of *Applied Calculus*, 9th edition, by Hoffman and Bradley). A rectangular storage shed with a flat roof is to be constructed of material that costs \$15 per square foot for the roof, \$12 per square foot for the two sides and back, and \$20 per square foot for the front. Suppose that you wanted to find the dimensions of the shed of largest volume that could be constructed for \$8000. Write down the system of equations that you would need to solve if you were using Lagrange multipliers for this problem. **DO NOT SOLVE the system**.

$$\begin{cases} y^2 = (15y + 32z)\lambda \\ \lambda z = (15x + 24z)\lambda \\ xy = (24y + 32x)\lambda \\ 8000 = 16xy + 24yz + 32xz \end{cases}$$